J. Fluid Mech. (2008), vol. 601, pp. 85-100. (© 2008 Cambridge University Press 85
doi:10.1017/S0022112008000621  Printed in the United Kingdom

Growth of inertia—gravity waves in sheared
inertial currents

K. B. WINTERS

Scripps Institution of Oceanography, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093-0209, USA

(Received 12 April 2007 and in revised form 10 January 2008)

The linear stability of inviscid non-diffusive density-stratified shear flow in a rotating
frame is considered. A temporally periodic base flow, characterized by vertical shear
S, buoyancy frequency N and rotation frequency f, is perturbed by infinitesimal
inertia—gravity waves. The temporal evolution and stability characteristics of the
disturbances are analysed using Floquet theory and the growth rates of unstable
solutions are computed numerically. The global structure of solutions is addressed
in the dimensionless parameter space (N/f, S/f, ) where ¢ is the wavenumber
inclination angle from the horizontal for the wave-like perturbations. Both weakly
stratified rapidly rotating flows (N < f) and strongly stratified slowly rotating flows
(N > f) are examined. Distinct families of unstable modes are found, each of which
can be associated with nearby stable solutions of periodicity 7 or 27 where T is the
inertial frequency 2m/f. Rotation is found to be a destabilizing factor in the sense
that stable non-rotating shear flows with N2/S?> 1/4 can be unstable in a rotating
frame. Morever, instabilities by parametric resonance are found associated with free
oscillations at half and integer multiples of the inertial frequency.

1. Introduction

The stability of density-stratified shear flow in a rotating frame is investigated using
linear stability theory. In the non-rotating limit, the stability of time-independent
stratified shear flows has been extensively studied and fundamental theorems have
been derived. The principal result of interest here is the Miles—Howard (Miles 1961;
Howard 1961) sufficient condition for stability which states that if Ri =N2/S? is
everywhere greater than 1/4, then the flow is stable. Here N is the buoyancy frequency
and S is the vertical shear, both of which may vary with height z. This result however,
and indeed the classical normal mode approach to stability analysis (see e.g. Drazin
& Reid 1981; Chandrasekhar 1961), are not applicable to time-dependent shear flows.
A fundamental yet unanswered question is: what is the effect of rotation on the basic
stability properties of stratified shear flows?

If the base flow is periodic, parametric instabilities related to resonance between
infinitesimal, free wave perturbations and half or integer multiples of the forcing
frequency are possible and these instabilities have been observed experimentally for
both surface (Faraday 1831) and internal gravity waves (Bennielli & Sommeria 1998).
The stability of time-periodic flows can be analysed using Floquet theory for periodic
ordinary differential equations (Ince 1956; Hochstadt 1961; Bender & Orszag 1978).
The Floquet approach has been used to examine the stability properties of internal
gravity waves in a non-rotating frame and parametric instabilities have been identified
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for all wave amplitudes and, in particular, for arbitrarily large values of Ri (Mied
1976; Drazin 1977; Lombard & Riley 1996), Majda & Shefter 1998).

Numerical investigations of parametrically unstable internal waves have focused on
both the early stages of the instability for which linear stability theory is applicable
and also on the nature of the fully developed flow, energy transfer mechanisms,
implications for a laminar to turbulent transition and particle dispersion and mixing
(Bouruet-Aubertot et al. 1995; Lombard & Riley 1996; Bouruet-Aubertot et al. 2001).

In this work, we consider time-dependent shear flows in which the time dependence
is periodic, arising from rotational effects. The primary motivation is geophysical
and in this context we seek to determine the stability of sheared horizontal inertial
currents. There are three fundamental time scales in the problem, defined by N,
S, and the rotation frequency f, and the stability of infinitesimal inertia—gravity
waves is related to these frequencies through resonance conditions. Growth rates are
determined numerically and families of unstable solutions are identified as a function
of the parameters defining the inertial shear flow and the infinitesimal test waves. The
stability problem is analysed for both the weakly stratified rapidly rotating regime
where N < f and the strongly stratified slowly rotating limit N > f which characterizes
many oceanic flows. Two-dimensional numerical simulations are used to verify the
stability analysis and to explore the nature of the flow once the perturbations reach
finite amplitude.

2. Mathematical model

Our starting point is the Boussinesq equations for a density-stratified fluid, expanded
about a depth-dependent ambient state consisting of a stable potential density profile
p(z) and a sheared inertial current [%, V"] = Uy(z)[cos(ft), —sin( ft)]. The horizontal
velocity is written as [u, v] =[%, V"] + [u', v'] where the perturbation [u’, v'] is taken
to be sufficiently small in magnitude so that, to leading order, we neglect terms that
are quadratic in the perturbation variables. Here z is the vertical coordinate (positive
upward), x and y are the horizontal coordinates, ¢ is time, and f is the rotation
frequency. The linearized equations for small perturbations from the basic state are
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It is convenient to shift to a time-dependent horizontally Lagrangian frame by
introducing the coordinate transformations:

E=x— /t w dt' =x — 99 gin( ). (2.6)
n=y— /t v dl =y — UO;Z) cos(f1), 2.7)
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In terms of these coordinates we have
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3. Time-dependent normal mode analysis

We now seek solutions to these equations in the form of time-dependent normal
modes with respect to the transformed variables. Noting that there is no preferred
horizontal direction, we consider the time dependence of two-dimensional wave-like
disturbances of the form

P&z, 1) = p(r)e® ), (3.1)
assuming similar forms for the other primed variables.
Substituting into Eq. 2.10 we find

N _ ipO Lﬁ/ éA/
p(r)—(m+k%/f2)<at +po,0>, (3.2)

and differentiating (2.9) with respect to & and combining with Eq. (2.12) gives

ov'

g =
Using (3.2) in (2.8), differentiating with respect to & and using continuity (2.12),
gives
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Let N>=—(g/po)(dp/dz), taken hereafter to be independent of z. To simplify
notation, let tan¢ =m/k parameterize the wavenumber vector orientation of
infinitesimal disturbances. Let . =(dUy/dz)/f be the dimensionless ambient shear
and 4 = N/f, both taken as depth-independent constants. Denoting £2(t)=tan¢ —

& sin(t), with dimensionless time 7 = fr, and using (2.11) and (3.3) to relate v and
o', the stability problem can be expressed as

m A/
Fw (3.3)

o o] [T cosr) ARl
H= 1+ 2 % 1+ 22 H (3.5)
Y 1 0 p

Here w is the dimensionless, time-varying amplitude of the vertical velocity
perturbation, scaled by fL, p is the corresponding amplitude of the density
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FiGure 1. Dimensionless parameter space for the linear stability problem. The base state is
defined by the frequencies N and f parameterized by # and 6. The inclination angle of the
perturbation wavenumber is given by ¢.

perturbation, scaled by L|dp/dz| and L is taken to be a vertical length scale over
which the ambient flow properties /" and . are taken as constant.

It is convenient here to introduce polar coordinates # and 6 where A" =2 cos(6)
and & =Z%sin(0). We seek to determine (i) the parameter values (£, 0) describing
sheared inertial currents for which infinitesimal perturbations with wavenumber
orientation ¢ experience exponential growth in time and (ii) the corresponding growth
rates. Because the coefficient matrix in (3.5) is 2n-periodic with respect to 7, we will
use Floquet theory to determine growth rates for discrete values of # as a function
of (8, ¢). A schematic of the parameter space is shown in figure 1. The portion of this
space, projected onto the ¢ =0 plane, where N?/S*>>4 is shown schematically via
shading. The dashed line indicates the region where, in addition, N/f > 1, which is
generally the case for stably stratified flows in the oceans and atmosphere, though there
may also be weakly stratified geophysical flows of interest, perhaps near boundaries
and/or at high latitudes where N/f <1. As we will see shortly, there are special
values, Z = {1/2, 1}, where the structure of the set of unstable solutions changes and
these values are indicated by heavy curves. In §6, we show the results of stability
calculations in the (8, ¢)-plane for several values of # as indicated by figure number.
In §7, the results of two-dimensional direct numerical simulations are shown for the
parameter values indicated with filled circles.

4. Unsheared limit: ¥ =0=0

Before examining the general problem (3.5) however, it is useful to examine the
limit ¥ =0. When . =0, £2 =tan ¢ and (3.5) can be reduced to a single second-order

ordinary differential equation for @(z):
d? . N?r4tan’¢
@t Ty 00 -l

with purely oscillatory solutions w(tr)=¢"* and the standard dispersion relation
w? = (AN?+tan’ ¢)/(1 + tan®> ¢). When /" > 1, the dimensionless frequency satisfies



Growth of inertia—gravity waves in sheared inertial currents 89

1 <w. <A whereas for 4/ <1, we have /" < w. < 1. In either case, the dimensionless
inertial period T is equal to 2.
Transforming back to the original, dimensional coordinates (x, z, t) gives

w =exp(i(kx +mz — kaO sin( ft) — wot)) (4.2)

where wo? = (k*’N? + m?f?)/(k*> + m?*). The depth-independent inertially oscillating
current modulates the intrinsic frequency of infinitesimal internal waves by Doppler
shifting as the current rotates into and out of alignment with the horizontal component
of the wavevector. In general, the solutions of (4.2) comprise a continuous spectrum
of non-periodic waves along the § =0 axis.

Within this spectrum however, there are discrete periodic solutions. Periodicities
of T and 2T are possible when w.={1,2,3,...} and w. = {%, %, %, ...} respectively.
As we will see, the identification of waves of critical frequency when & =0, i.e. free
waves with periodicities matching the inertial period or its subharmonic, is useful
in interpreting the numerically determined stability characteristics when % > 0. For
A" >1 the frequency w. =% is subinertial, does not satisfy the dispersion relation,
and therefore must be discarded. The remaining frequencies form two distinct sets of
periodic waves. Both sets are finite owing to the restriction w. < ..

For /" <1 however, superinertial frequencies w. > 1 do not satisfy the dispersion
relation. Provided that 4" < %, there are exactly two periodic solutions with frequencies
w.={1, 1} while for < 4" <1 the only periodic solution is a pure inertial flow with
w« = 1. Thus, for /"< % there exists exactly one inertia—gravity wave that is resonant
with the subharmonic of the inertial frequency. For the special case A~ =%, this
critical wave is a pure buoyancy oscillation with strictly vertical displacements. For
N < %, the wavevector of the critical wave is inclined from the horizontal and the
wave motions have both horizontal and vertical components.

5. Floquet analysis

We can exploit the fact that the coefficient matrix in (3.5) is periodic in time.
Defining the vector ¥ (7) = [(1), p(7)]" we rewrite (3.5) as

=AY, (5.1)

From Floquet theory (see e.g. Ince 1956; Bender & Orzsag 1978; Hochstadt 1961)
we know that if ¥ = (¥ ((7), ¥,(t)) is a matrix with columns composed of two linearly
independent solutions of (5.1), then there exists a non-singular matrix of constants K
such that

U(rt+T)=K ¥(1) (5.2)
where T =2n is the fundamental period of the coefficient matrix and det(K)=1.
Floquet theory also states that there exists at least one solution of the form

¥ (7)) =" p(r) (5.3)

where ; =e*T i=1,2 are the eigenvalues of K and p(t) is a T-periodic vector. The
eigenvalues of K therefore determine the stability of the general solution of (3.5) for
a given set of parameter values (%, 0, ¢).

Our objective then is to determine the stability properties of solutions in the three-
dimensional parameter space defining the ambient inertial current, and stratification
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FiGure 2. Dimensionless growth rates, scaled by f, of unstable modes in the (6, ¢)-plane for
(a) 2=0.25, (b) R=0.5. Values of 0 corresponding to discrete values of N/f are indicated
in both panels along with the particular value associated with N2/S>=1/4 ((a) only). The
blue curves relate the inclination angle to 6 using the unsheared dispersion relation which is
formally valid only when 6 =0 (see text).

and wavenumber inclination angle of infinitesimal disturbances. By twice integrating
(5.1) numerically, from 7=0 to r =T, using the initial conditions ¥(0)=[1,0]”
and ¥(0)=[0, 1]7, we can simultaneously determine both ¥(T) and K for a given
triplet (%, 6, ¢). For each pair of integrations, we confirm accuracy by comparing the
determinant of the numerically computed K to the theoretical value of 1, which ensures
that the two computed solutions ¥; are indeed linearly independent. The eigenvalues
of K then determine the stability properties of two linearly independent solutions and
therefore of the general solution. Stable and unstable regions of parameter space are
separated by transition curves, along which u =0 and solutions are both stable and
periodic with periodicity T or 2T.

6. Stability diagrams

Growth rates u were computed numerically by integrating (3.5) in time to generate
the 2 x 2 matrix K as a function of the background flow parameters (.4, %) and the
perturbation wavenumber inclination ¢. To illustrate the structure of the unstable
solutions in this three-dimensional parameter space, the results are displayed in the
two-dimensional (0, ¢)-plane (see figure 1) for selected values of #. To understand
the somewhat complex structure of the solutions shown for moderate values of £, it
is instructive to first examine the structure for small values and note the changes that
occur as # increases.

6.1. #<1

We first consider stability diagrams for cases # < 1/2 shown in figure 2. Contours of
dimensionless growth rates w are drawn for u={107%, 1073, 1072, 0.05, 0.1}. In these
diagrams, because (A, &) is given by Z(cos(0), sin(6)), N/f decreases from a value
of # when 6 =0 to zero when 6 =m/2. Lines of constant N/f are indicated in each
panel. Similarly, the ratio N2/S* decreases with increasing 6. The value N2/§*=1/4
is indicated in figure 2(a) for reference. For steady parallel shear flows, N?2/S> < 1/4
is a necessary but not sufficient condition for Kelvin—-Helmholtz instability. The
flows considered here however, are not steady and the N?/S?>=1/4 value has no
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formal theoretical significance. Unstable modes are found for both larger and smaller
values.

When 6 =0, ¥ =0 and we have already identified a continuous spectrum of
Doppler-shifted wave solutions. For the case #=1/4 shown in figure 2(a), the
unsheared (6 =0) wave with ¢ =¢. ~0.15nt has a dimensionless frequency of 1/2
and is the only wave that is 27T -periodic. As # increases, the elevation angle ¢
corresponding to the unsheared wave with w.=1/2 decreases. At the critical value
2=1/2, $ =0 and the resonant wave is a pure buoyancy oscillation. Figure 2 shows
that the 2T -periodic waves in the ¥ =0 limit correspond to points on the 6 =0
axis bounding regions of instability in the (6, ¢)-plane. Within these unstable regions,
perturbations have exponential growth rates u >0 that increase with increasing 6,
ie. for decreasing ratios N/S. The main result here is that a weakly stratified or
rapidly rotating (N < f/2) sheared inertial current is always unstable. There always
exist infinitesimal inertia—gravity wave perturbations that grow exponentially in time.
Furthermore, the wavenumber inclination angle of the most unstable perturbation
can be estimated using a simple resonance argument matching the periodicity of free
waves to the subharmonic of the inertial forcing.

Because 4" decreases with increasing 6, the wavenumber elevation angle for an
infinitesimal free inertia—gravity wave, ¢.(6), with subharmonic frequency 1/2 must
increase. Using the unsheared dispersion relation (without formal justification because
& is not small throughout the figure) and setting w. =1/2, /" =% cos(0) gives

$.(0) = tan~"! \/w (6.1)

as shown in the figure. These curves approximately bisect the unstable regions and
provide reasonable estimates of ¢ for the most unstable mode, suggesting that
the physical mechanism enabling infinitesimal wave-like disturbances to grow in
time is related to an approximate resonance between inertia—gravity waves and the
subharmonic of the shear forcing frequency.
6.2. % <R < %

Stability diagrams for £ = O(1) are shown in figure 3. For 1/2< % < 1, there is only
a narrow range of free wave frequencies 4" < w. <1, all of which are greater than
1/2 but less than 3/2. In this region of parameter space, no 27T -periodic free waves
are possible. Nevertheless, there are unstable regions of parameter space and within
these regions, growth rates increase with decreasing N/S. These regions, however, do
not shrink to isolated points on the 6 =0 axis but rather to points on the ¢ =0 axis
for which perturbation velocities are purely vertical.

The critical intersection values 6., however, are not easily recoverable. For # = O(1),
we see that the critical values occur near the intersection of N/f =1/2, ie. where
buoyancy oscillations with ¢ =0 have dimensionless frequencies of 1/2 and periods
of 2T but displaced somewhat to the left. Unfortunately, the (3.5) do not reduce to an
easily solvable limit on ¢ =0 axis. To predict the intersection points, it is necessary
to determine conditions for 27 -periodic solutions with ¢ =0 but for finite values of
& . Solution of this problem appears to be as difficult as solving the stability problem
for arbitrary points in the interior of the (6, ¢)-plane. Though we cannot offer an
analytical demonstration, it appears that these unstable regions are closely related
to those associated with unsheared wave resonances discussed previously. In this
case however, the stable 27 -periodic solutions involve purely vertical perturbations,
transitioning from from the 6 =0 axis to the ¢ =0 axis when # exceeds 1/2. We
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FiGURE 3. Dimensionless growth rates for Z =(a) 0.6, (b) 0.8, (¢) 1.0, (d) 1.2.

conjecture that a more complex resonance condition, relating the buoyancy frequency
N, the shear frequency S and the subharmonic f/2 distinguishes the stable 27 -periodic
solutions when ¢ =0.

As Z increases, there are systematic changes to the character of this family of
unstable solutions. Both the ¢ =0 intercept 6. and the maximum growth rate increase
with . The selectivity mechanism, however, appears to weaken. For any particular
value of 6 for which unstable solutions exist, increasing Z results in a broader range
of unstable inclination angles ¢. This observation is apparent not only in figure 3 but
in the subsequent figures as well.

When £ > 1 (figure 3d), a new set of unstable solutions emerges. The unstable region
for this set shrinks asymptotically to the point ¢ = /2, 8 = cos~!(1/%) corresponding
to purely horizontal inertially oscillating disturbances that are unaffected by the
ambient shear. In contrast to the unstable modes discussed previously, the region
within which these additional modes exist is bounded by stable T-periodic solutions.
It is clear from the stability diagram that, compared to the modes bounded by
2T -periodic solutions, the growth rates of these solutions are considerably smaller.

Note also that when Z>1, 1 <w.<Z for all values of (8, ¢). The previously
distinguished wave frequency w. =1/2 does not satisfy the dispersion relation and no
free waves of this frequency are supported. Furthermore, for 1 <% < 3/2, there are
no free wave solutions satisfying 27 periodicity.
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FIGURE 4. Growth rates, Z=(a) {1.8, (b) 2, (¢) 3, (d) 5}. For # > 3,2, additional families of
unstable solutions are found. These solutions are associated with the 27 -periodic, free wave
frequency w. =3/2 (uppermost red star in all panels), w. =2 (uppermost blue star in (b) and
(¢)), ws=5/2 (second red star from top in (b) and (c)), w« =3 (second blue star in (c)) etc.
Though unstable solutions are expected, associated with w. =4 and 9/2, these solutions were
not captured at the resolution used to discretize 6 and ¢ for this figure. (A higher resolution
analysis is shown in figure 5.)

6.3. %’>%

For # > 3/2 parts of the (6, ¢)-plane have A" > 3/2 and, for 6 =0, 2T -periodic waves
with frequencies w. =3/2,5/2, ... exist provided that w. <Z. The stability diagram
for #=1.8 is shown in figure 4(a). In this case, the only 27 -periodic wave possible
is that with w. =3/2. As in the previous cases, associated with the exact 27 -periodic
solution for # =% =0 is a set of unstable modes for . > 0, though in this case the
region of instability intersects both the 6 =0 axis, where the analytical solution is
known, and the ¢ =0 axis, for which % is finite and a closed-form solution is not
known. Again, we can attempt to estimate the ¢ =0 intercept by neglecting % and
calculating the value 6 = cos™!(3/2%) ~0.19% for which pure buoyancy oscillations
have a dimensionless frequency of 3/2, but this overestimates the observed intercept
considerably. Again, it appears that & cannot be ignored and that there exist stable
2T -periodic solutions fundamentally influenced by shear.

As Z increases to 2, figure 4(b), no additional distinguished frequencies are possible,
but the value of ¢ for which free waves satisfy w. =3/2 moves upward on the § =0
axis and the value of 6, for which /"= 3/2 moves to the right. The associated region of
unstable modes moves correspondingly outward from the origin. Our crude estimate
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for the ¢ =0 intercept explains the trend as # increases but, as before, overestimates
the intercept itself.

With increasing %, the contour line N/f =1 moves to the right along with the
family of unstable modes that asymptotes to the ¢ =n/2, 6 = cos~'(1/%#) T-periodic
solution. Both the size of the unstable region associated with these modes and their
maximum growth rates increase. These solutions also exhibit weak mode selectivity.
Within this family, for a given 6, growth rates are approximately uniform for a wide
range of ¢ less than about 0.357.

Figure 4(c) shows the results for # = 3. Both the 3/2 and 5/2 frequencies are possible
here and the ¢ values for the corresponding 2T -periodic free waves for & =0 are
indicated in the figure. Also shown is the value for the T-periodic wave with w. =2.
Associated with each of these periodic solutions is a distinct region of unstable
modes when % > 0. As # continues to increase, more resonant wave frequencies
satisfy the dispersion relation and additional distinct families of unstable modes are
seen (figure 4c). In general, with increasing %, all previously existing families of
unstable modes shift to the right and exhibit faster growth rates while additional
families of unstable modes make their initial appearance in the lower left portion
of the plane. In contrast to both families of unstable solutions discussed previously,
these new solutions are both strongly and weakly mode selective, depending on the
N/S ratio. For the family of modes associated with a given T- or 2T-periodic
solution when S=0, only a very narrow range of ¢ yields unstable solutions
at smaller values of N/S. As N/S approaches some critical value, however, the
instability transitions to a weakly selective one where a broad range of ¢ values grow
exponentially.

The size of the regions defining the unstable solutions becomes very small for
small values of either 6 or ¢. Moreover, the associated growth rates vanish as
the axes are approached. Though we are able to extract the general structure
of the instability diagrams and understand qualitatively how the results change
as # increases, it would be computationally demanding to try to recover precise
quantitative details of the higher frequency modes for large values of #. Very high
resolution in parameter space is required to resolve the vanishingly thin unstable
regions. Furthermore, each growth rate estimate requires numerical integration over
a dimensionless time T followed by a calculation of the eigenvalues of the resulting
matrix K. In this regime however, in addition to the slow time evolution, the solutions
also oscillate at the higher frequencies associated with the wavenumber inclination
¢. As these intrinsic frequencies increase, it becomes more and more difficult to
integrate over an inertial period to a specified minimum accuracy. Finally, the accuracy
requirements increase with frequency because the corresponding growth rates decrease.
Figure 5 is the stability diagram for # = 10 computed with a parameter discretization
AB = A¢p=1/15000.

6.4. Summary of stability results

Linear stability is examined in the parameter space (#,0) that uniquely defines
the constant dimensionless shear and buoyancy frequencies of an idealized inertial
current, normalized by the Coriolis parameter f > 0. Floquet theory is used to
determine exponential growth rates of infinitesimal disturbances with wavenumber
inclination angle ¢.

Throughout this parameter space, the most unstable modes are found to be
associated with 27 -periodic solutions, i.e. within distinct regions of parameter space
that asymptote to distinct 27-periodic solutions with zero growth rate. This statement
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FIGURE 5. Growth rates for the case #=10 are shown in colour. The locations where
maximal growth rates satisfy 5 x 1077 < <0.025 are indicated in red and blue, corresponding
to bounding stable solutions of periodicity 27 and T respectively. Also shown are the
inclination angles ¢. corresponding to unsheared resonant wave frequencies using the same
colour convention. Only the lowest few frequencies in each set are explicitly labelled. The
vertical lines indicate the particular values 6 corresponding to N/f values of 8, 6,4 and 2 as
indicated.

is made rigorously for the case # < 1/2 where the periodic asymptotic solutions can
be expressed in closed form. For # > 1/2, this family of unstable modes no longer
intersects the ¥ =0 axis but rather the ¢ =0 axis, with the intersection point 6
increasing with #. In this case, no closed-form solution has been found and the
classification of the solution families is inferred from the numerical results. For #
greater than about 2, this family of unstable solutions exists in a region of parameter
space where N2/S8% < 1/4, though this familiar value has no specific relevance in the
context of time-dependent flows considered here. These solutions are generally only
weakly mode selective.

In addition to this family, when £ > 1, a second family of unstable modes is found.
These solutions exhibit an asymptotic association with the particular stable 7-periodic
inertial solution with N = f. The physical interpretation of this result is not clear. For
all #Z>=1, the maximum growth rate within this second family of unstable solutions
is always less than that found within the first set. For all # > 1 there are always
unstable solutions within this family for which N?/S? > 1/4. This family of solutions
is also weakly mode selective.

As # increases beyond 3/2, additional distinct families of unstable solutions are
found. These families are associated with the T-periodic dimensionless frequencies
{1,2,3...} and the 2T -periodic frequencies {3/2,5/2,7/2 ...} for all such frequencies
less than #£. The growth rates of these solutions are always smaller than for
either of the first two families discussed above and decrease with increasing
frequency.
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7. Two-dimensional nonlinear evolution

To illustrate the growth of unstable perturbations, solutions to two-dimensional
initial value problems are computed numerically. The governing equations are

0 N 1
—u—i-u-Vu—i-kfxu—i—ép:—pr—}—szu, (7.1)
at Po 0o

0

sz +u-Vp=kVp, (7.2)

V-u=0, (7.3)
in 0 <z < L. The simulated flow undergoes Coriolis acceleration but is constrained to
be two-dimensional by taking d/dy = 0 for all dependent variables. The computational
domain is L,-periodic in the x-direction and stress-free rigid-lid boundary conditions
are imposed at z=0,L. The equations are solved numerically using Fourier
pseudo-spectral techniques and third-order Adams—Bashforth time stepping (Winters,
MacKinnon & Mills 2004).

A stable linear density profile with constant N is prescribed along with an initial
shear flow U(z) with constant shear S. Because the base flow is inconsistent with
the stress-free boundary conditions, we modify it slightly so that, over relatively
small regions of size L/10, the prescribed ambient shear decays smoothly to
zero. In the interior of the domain, the ambient flow is uniformly sheared and
stratified.

In the absence of additional perturbations, the prescribed flow U(z) simply oscillates
at the inertial frequency f. (We consider only the parameter regime where the diffusion
of the momentum associated with d’U /dz? is negligible.) To examine the stability of
initial flows parameterized by (A", &), the mass distribution is perturbed slightly at
t =0. The perturbation p’ takes the form

4 _
d
p=W(z) x> &L ’d;’ cos(k;x 4 m;z) (7.4)

i=1

where ¢; is a small dimensionless random variariable of O(107*), and the summation
allows for random weighting of all sign combinations for the wavenumbers. The
windowing function W(z) = exp —[z — L/2/o]? for o = L/5 confines the perturbations
to the interior region of interest and ensures that the displacements are identically
zero at z=0, L.

Figure 6 shows the temporal evolution of the vertical velocity field at the point
(x,z) = (Lyx/2,L/2) for the particular case Z=1/2, 6/t=0.3 and ¢/n=0.15 (see
figure 2b). Also shown is an exponentially growing envelope function with growth
rate u=~0.1 determined from the stability analysis. Linear stability analysis is only
applicable while the amplitudes of the perturbations are small and it is apparent from
the figure that the early growth is well-predicted theoretically but that later times are
not.

Figures 7 shows snapshots of the density and perturbation vorticity fields as
the perturbations grow from infinitesimal to finite amplitude. The times for these
snapshots are indicated in figure 6. In the stability analysis, only the perturbation
wavenumber ratio m/k is relevant. The vertical scale of the test wave is implicitly
required to be small compared to a scale over which the ambient shear and
stratification are approximately uniform. In this simulation, the vertical scale L
is taken to be 10m, the size of the computational domain, while the vertical



Growth of inertia—gravity waves in sheared inertial currents 97

8000

6000

4000

T
N

2000 ’ R

3=

—2000 +

—4000 +

—6000

—8000 1 1 1 1 1
0
T/2m

FIGURE 6. Time series of vertical velocity (solid) at (x, z) = (L,/2, L/2) for #=1/2,0/n=0.3
and ¢/n=0.15 (see figure 2b) along with exponential growth from linear stability analysis.
Discrete time values for which snapshots of the density and perturbation vorticity fields are
extracted are also indicated by vertical lines.

wavelength of the perturbation is set at 1 m. For ¢/m=0.15, using tan¢ =m/k
gives a horizontal wavelength of about 0.5 m. The imposed perturbation corresponds
approximately to the most unstable mode for this particular weakly-stratified, rotating
shear flow. At the times shown in figure 7(a), the perturbation appears wave-like in
character.

At later times, figure 7(b), the perturbation has grown to finite amplitude and
linear stability theory is no longer valid. The wave-like character of the flow is less
evident and the flow field more closely resembles a network of interacting eddies.
The flow is nonlinear during the time period spanned in the figure and, at times,
the isopycnals are close to overturning. (Note the aspect ratio of the plots.) The
detailed nature of the flow field in this regime is not of particular interest because of
the two-dimensional approximation. Sheared flows with isopycnal overturns are often
susceptible to three-dimensional gravitational instabilities which are not captured
in these two-dimensional simulations. Nevertheless, based on the two-dimensional
results, it seems reasonable to speculate that, given sufficient time to grow, the modes
of instability identified here will lead to further instabilities and a transition to
three-dimensional turbulence.

A second example, from the family of modes associated with T periodicity, is
shown in figure 8(a). For this experiment, Z =10, 6/1=0.34 and ¢/m=0.25 (see
figure 5). The growth rate for this mode is much faster and overturns are found after
only three inertial periods. Again, careful exploration of the finite-amplitude limit
requires three-dimensional simulations and is not pursued here. Finally, figure 8(b)
illustrates a flow for which N?/S?> <1/4 (#=10, 6/1=0.4075 and ¢/n=0.25, see
figure 5). In this flow, the instability grows very rapidly after only 2 inertial periods.
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FIGURE 7. Density contours and perturbation vorticity u, — w', normalized by the ambient
shear S (a) during early stages of growth and () at later times for the case Z=1/2, 0/n=0.3
and ¢/n=0.15, (see figure 6. The arrows indicate the magnitude and direction of the inertial

current U(z). The time in inertial periods 2r/f is shown above each panel.
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FIGURE 8. As in figure 8 for the cases # =10, /1 =0.25 and ¢/n=0.34 (a) and
¢/n=0.4075 (b).
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It is interesting to note the banded structure of the finite-amplitude state and the
asymmetry about z=L/2 where the ambient flow U =0.

8. Conclusions

We conclude by listing the principal results derived from the linear stability analysis.

(i) Rapidly rotating sheared inertial currents, for which N/f <1/2, are always
unstable to inertia—gravity waves within a finite frequency band corresponding
approximately to w = f/2 (figure 2).

(ii) Inertially oscillating shear flows are more unstable than steady flows in the
sense that stable non-rotating flows with N?/S?> > 1/4 can be destabilized under the
influence of rotation. Furthermore, for all values of #, there are unstable modes with
N?/8% > 1/4, the condition for stability in steady stably-stratified shear flows.

(iii) For # greater than 1/2 and less than about 5 there exists at least some range
of N/S for which the flow is stable to all perturbation wavenumber inclination angles
¢ (figure 4).

(vi) For # greater than about 5, sheared inertial currents are always unstable for
all finite values of N/S, with growth rates generally increasing with decreasing N/S
(figures 4d and 95).

Because the inertial shear S and the ambient stratification N were both taken to be
constants, independent of depth, it is implicit in the theory that the infinitesimal test
waves parameterized by ¢ =m/k have vertical wavelengths that are small compared
to any finite characteristic vertical scale of the background inertial current. In practice,
if the characteristic scale of the inertial current is small, then the theory applies only
to correspondingly smaller test waves. Viscous effects, which have not been included
in the analysis presented here, will likely act to stabilize small-scale waves with linear
inviscid growth rates p less than O(m?v) where v is the fluid viscosity.

The author gratefully acknowledges support from the US National Science
Foundation (OCE04-25283) and the US Office of Naval Research (N00014-05-1-
0513). The comments of Bill Smyth and two anonymous referces were very helpful
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